1. O PARADOXO DOS SORITES
Pegue uma grande lata de tinta azul e pinte um cartão com ela. O cartão passou a ser azul.
Acrescente uma pitada de tinta amarela à lata de tinta azul, misture bem e pinte um segundo cartão. A cor deste cartão é indistinguível da cor do primeiro, logo, o segundo cartão também é azul. Coloque mais um pouco de amarelo na lata, misture bem e pinte um terceiro cartão; este cartão é visualmente indistinguível do segundo, portanto, o terceiro cartão também é azul.
Você pode ver para onde isso está nos levando: cada cartão é visualmente indistinguível do anterior, de modo que você não pode, logicamente, dizer que eles têm cores diferentes.
Quando você acrescentar a centésima porção de amarelo e usá-la para pintar um cartão, o raciocínio lhe diz que ele é da mesma cor que o cartão de número 999, que por sua vez é da mesma cor que o cartão 998...
O qual tem a mesma cor que o primeiro cartão, a saber, azul. Mas é claro que a essa altura a cor da tinta na lata é verde! Logo, o cartão de número 1000 é verde, mas a lógica nos diz que ela deve ser azul!!
2. O PARADOXO DO MENTIROSO
Considere o enunciado "Este enunciado é falso".
Se ele é verdadeiro, então o que ele diz é verdade, a saber: que ele é falso.
Se ele é falso, então, uma vez que isso é exatamente o que ele declara a respeito de si mesmo, ele é verdadeiro.
Logo, quer seja verdadeiro, quer falso, ele é tanto verdadeiro quanto falso!
3. O PARADOXO DO EXAME SURPRESA
O professor diz na sexta-feira: "Haverá um exame surpresa em um dia qualquer da próxima semana". Uma vez que a semana escolar se encerra na sexta-feira, sexta não pode ser o dia do exame surpresa (pois, como os alunos podem ver desde já, se nenhum exame tiver sido aplicado até quinta à noite, sexta será o único dia restante para o exame e, então, sua aplicação será esperada e deixará de ser uma surpresa).
Mas a sexta-feira tendo sido eliminada, a quinta-feira toma-se o último dia possível para o exame e, assim, a quinta-feira é eliminada por um raciocínio similar - você pode ver, desde já, que se nenhum exame tiver sido aplicado até quarta à noite, então, com a sexta-feira tendo sido eliminada como um dia possível para o exame, a quinta-feira seria o único dia disponível e, portanto, a aplicação do exame seria esperado e deixaria de ser uma surpresa.
Por um raciocínio similar, quarta, terça e segunda-feira são, um a um, eliminados. Em outras palavras, nenhum exame surpresa pode ser aplicado em nenhum dos dias da semana. Chega a semana seguinte, e o professor entra na sala, digamos na terça-feira, e distribui as folhas do exame. Surpresa!
|